Siirry sisältöön

Kesko Oyj

Summary

Kesko Oyj
Company Sizes
  • 200-300
Toimialat
  • Retail
Processes
  • Supply chain / procurement
Project
Project types
  • Operational excellence
Cost Levels
  • 100 001 – 1M€
Launch dates
  • 2024
Regions
  • Finland
Languages
  • English
Implementation
Implementation levels
  • Production
AI Techonologies
  • Predictive analytics
Partners
  • Solita
Techonologies
  • Azure
  • Python
GDPR Data involved

No

Kesko needed to improve forecasting accuracy in its grocery division to reduce waste, optimize shelf availability, and better align procurement with consumer demand across its large retail network.

Solution

Implemented a predictive analytics model using machine learning to analyze historical sales data, weather patterns, seasonal trends, promotions, and local events. The system continuously updates and improves forecasts in near real-time, enabling store-specific demand planning.

Outcome

Implemented a predictive analytics model using machine learning to analyze historical sales data, weather patterns, seasonal trends, promotions, and local events. The system continuously updates and improves forecasts in near real-time, enabling store-specific demand planning.

ROI

Achieved full ROI within 12 months due to cost savings in waste and improved sales through better availability.


Yhteyshenkilö

Erkki Esimerkki

Titteli

Oletko AI Finlandin jäsen ja haluat tietää lisää projektista itse asiakasyritykseltä?

Blah blah enter your email and an optional message.

Kenttä on validointitarkoituksiin ja tulee jättää koskemattomaksi.

Kesko Oyj

Summary

Kesko Oyj
Company Sizes
  • 200-300
Toimialat
  • Retail
Processes
  • Supply chain / procurement
Project
Project types
  • Operational excellence
Cost Levels
  • 100 001 – 1M€
Launch dates
  • 2024
Regions
  • Finland
Languages
  • English
Implementation
Implementation levels
  • Production
AI Techonologies
  • Predictive analytics
Partners
  • Solita
Techonologies
  • Azure
  • Python
GDPR Data involved

No

Kesko needed to improve forecasting accuracy in its grocery division to reduce waste, optimize shelf availability, and better align procurement with consumer demand across its large retail network.

Solution

Implemented a predictive analytics model using machine learning to analyze historical sales data, weather patterns, seasonal trends, promotions, and local events. The system continuously updates and improves forecasts in near real-time, enabling store-specific demand planning.

Outcome

Implemented a predictive analytics model using machine learning to analyze historical sales data, weather patterns, seasonal trends, promotions, and local events. The system continuously updates and improves forecasts in near real-time, enabling store-specific demand planning.

ROI

Achieved full ROI within 12 months due to cost savings in waste and improved sales through better availability.


Yhteyshenkilö

Oletko AI Finlandin jäsen ja haluat tietää lisää projektista itse asiakasyritykseltä?

Blah blah enter your email and an optional message.

Otsikko

Summary

Kesko Oyj
Company Sizes
  • 200-300
Toimialat
  • Retail
Processes
  • Supply chain / procurement
Project
Project types
  • Operational excellence
Cost Levels
  • 100 001 – 1M€
Launch dates
  • 2024
Regions
  • Finland
Languages
  • English
Implementation
Implementation levels
  • Production
AI Techonologies
  • Predictive analytics
Partners
  • Solita
Techonologies
  • Azure
  • Python
GDPR Data involved

No

Kesko needed to improve forecasting accuracy in its grocery division to reduce waste, optimize shelf availability, and better align procurement with consumer demand across its large retail network.

Solution

Implemented a predictive analytics model using machine learning to analyze historical sales data, weather patterns, seasonal trends, promotions, and local events. The system continuously updates and improves forecasts in near real-time, enabling store-specific demand planning.

Outcome

Implemented a predictive analytics model using machine learning to analyze historical sales data, weather patterns, seasonal trends, promotions, and local events. The system continuously updates and improves forecasts in near real-time, enabling store-specific demand planning.

ROI

Achieved full ROI within 12 months due to cost savings in waste and improved sales through better availability.


Oletko AI Finlandin jäsen ja haluat tietää lisää projektista itse asiakasyritykseltä?

Blah blah enter your email and an optional message.

Kenttä on validointitarkoituksiin ja tulee jättää koskemattomaksi.